منابع مشابه
A Canonical Form for Circuit Diagrams
A canonical form for circuit diagrams with a designated start state is presented. The form is based upon nite automata minimization and Shannon's canonical form for boolean expressions.
متن کاملAntiderivatives for Complex Functions
Since we have the same product rule, quotient rule, sum rule, chain rule etc. available to us for differentiating complex functions, we already know many antiderivatives. For example, by differentiating f (z) = z one obtains f ′(z) = nzn−1, and from this one sees that the antiderivative of z is 1 n+1 z – except for the very important case where n = −1. Of course that special case is very import...
متن کاملJordan Canonical Form
is the geometric multiplicity of λk which is also the number of Jordan blocks corresponding to λk . • The orders of the Jordan Blocks of λk must sum to the algebraic multiplicity of λk . • The number of Jordan blocks corresponding to an eigenvalue λk is its geometric multiplicity. • The matrix A is diagonalizable if and only if, for any eigenvalue λ of A , its geometric and algebraic multiplici...
متن کاملThe Jordan Canonical Form
Let β1, . . . , βn be linearly independent vectors in a vector space. For all j with 0 ≤ j ≤ n and all vectors α1, . . . , αk, if β1, . . . , βn are in the span of β1, . . . , βj, α1, . . . , αk, then j + k ≥ n. The proof of the claim is by induction on k. For k = 0, the claim is obvious since β1, . . . , βn are linearly independent. Suppose the claim is true for k−1, and suppose that β1, . . ....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Illinois Journal of Mathematics
سال: 1959
ISSN: 0019-2082
DOI: 10.1215/ijm/1255455256